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Net voltage caused by correlated symmetric noises

Jing-hui Li*? and Zu-gia Huang
Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093,
People’s Republic of China
2nstitute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875, People’s Republic of China
(Received 5 September 1996; revised manuscript received 13 March 1998

A Gaussian white noise model and a symmetric dichotomous noise model for supercondiageghson
junctions are studied. We show that correlated symmetric noises can produce a net voltage, which stems from
a symmetric breaking of the system induced by the correlation between additive and multiplicative noises. It is
found that there is a negative net voltage, exhibiting a peak with increasing noise strength. The results provide
a theoretical foundation for reducing the net voltage caused by the correlated symmetric noises.
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[. INTRODUCTION Taking into account both the additive and multiplicative
noises, we find that in some circumstances the symmetric
Superconducting tunnel junctions are interesting, not onlynoises can produce a net voltage.

because of their broad range of applications, but also because
they are nice model systems for studying a number of im- Il. GAUSSIAN WHITE NOISE MODEL
portant types of nonlinear phenomena, such as phase lock- . ) )
ing, bifurcations, chaos, solitonic excitations, and pattern for- Environmental perturbations, such as the perturbation of
mation[1]. Josephson showed that, in addition to the usuatlectromagnetic fields, the external vibration, and the change
single-particle tnnneling, electron pairs can tunnel through &f the external temperature, will give rise to a fluctuation of
narrow insu'ating material between two Superconducﬂ@]’_s the critical current in the Josephson jUnCtion. We describe
Such a superconductinglosephsonjunction consists of a this fluctuation by a stochastic external paramefgr

junction shunted by a resistang and driven by a current +0€o(t), in which £q(t) is the stochastic force of the Gauss-
I(t). The pair current across the junction is given By ian white noise andr is a positive constant. On the other

=J,sing, wherelJ, is the critical current and is the phase hand, the stochastic driving current is taken to be a thermal
difference of the superconducting order parameters acroggaussian white noisk(t) = 7o(t). Then Eq.(1) becomes
the junction. The evolution of the phase difference can be

. . ho. _
described by the equation ﬁ¢+[JO+ aéo(t)]sing= (1), &)

ho.
2eR? T Iosig=1(1), D where  (£o())r=(70())1=0, (&o(t)&(t'));=2D" &(t
—t"), and{no(t) 7o(t'))s=2D S(t—t"), with { ); denoting
where the phase difference is related to the voltag&/@y  the average over stochastic force. The multiplicative noise
= (#/2€) ¢, andI(t) is a driving currenf3]. Here we will be  éo(t) and the additive noisgo(t) in the Josephson junctions
interested in totally unbiased driving (t))=0, where( )  come from external environmental perturbation and thermal
stands for the time average. perturbation, respectively. However, they are not indepen-

Millonas and Chialvo[4] showed that an asymmetry in dent, but corrected to each other. For example, the environ-

noise can result in a fluctuation-induced net voltage in theViPration of molecules in the Josephson junction. Such fluc-
superconducting tunnel junction, tuation effects of the molecular vibrations will affect the

thermal additive noise. Thus we consider the correlation be-
ho. tween the thermal noisé&,(t) and the external noisgy(t),
V()= %(d’)- (20 and assume that their correlation function is taken to be a
simple relation,{ 7y(t) &o(t))s=2AyDD' 5(t—t"), with O
At the same time, they suggested that any noise with a unisA<1 indicating the strength of the correlation. Equation
form distribution of phases, such as Gaussian noise, will b&3) can be rewritten as
symmetric, and will not give rise to a net voltage. However, .
this conclusion was drawn by considering the driving current d=— wSing — &(t)sing + n(t), 4
as an additive noise, which does not appear universal. In this
paper, we study the net voltage caused by environmentathere wo=2eR}/A, &(t)=(2eocR/A)&(t), and n(t)
perturbations, together with the fluctuation of the driving=(2eR/%)ny(t). The Stratonovich interpretation of the sto-
current. The environmental perturbations can be describechastic differential equatiort4) yields the Fokker-Planck
by the multiplicative noise in the Langevin equati@7]. equation[8,9]
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IP($.1)=—34A($)P($,1)+35B(H)P(,1),  (5)

where A($) = — wosing— D’ cos¢(—sing+ A VD/D’), and
B(¢)=D(1-\?)+D’'(-sing+1yD/D')> with D

=(2eR%)?D and D’=(2ecR/%)?D’. Under periodic 07|
boundary conditions, we obtain the stationary solution of Eq. 06 |
(5 [10,17 A® E
> 05¢F

eV (¢ Y F

Py($)=N do'e V() -ub(d=0") (6) 04 | ;

B(¢) ¥
03}

Here

¢
‘1’(¢)=fo [A(¢")/B(¢")]do’,

fzqr sing

H=wo | ~ ———dé¢,

° B(1-A)+D’'(—sing+A\VD/D")?

0(¢d— ¢') is the Heaviside step function, ahtis a normal-

ized constant.
The net voltage is given by

oo
V(1)) :<<V(¢ut)>¢>f:£«¢>¢)f

fi
:E«_woSin(ﬁ_§(t)5in¢>f>¢, (7)

where( ), stands for the average ovex According to the
Novikov theorem12], we have(see the Appendjx

(&(t)sing);=D’'(—sing+\ VD/D')cosp. (8)

From Egs.(7) and(8), we obtain

1 %
V)o= im [ (V) adidr= 55 (A,

h (27
s PuoAI0

0
N7
zmgd
©

It can be seen from Eq9) that if the additive and multipli-
cative noises are uncorrelatex=t 0), the net voltage will be
zero; the net voltage always exists provided 0.

A(g)e"?

AP b dp e Y@ ) -ubd—¢")
B(4) f}g ¢

We wish to give some explanations of the origin of the

net voltage. Consider a solutiap(t) of Eq. (4) for a given
realization of the noises. Then ¢(t) is also a solution of
Eq. (4), with 7(t) replaced by— 5(t). If 5(t) and&(t) were
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FIG. 1. The mean negative voltage Bsfor different values of
\ in the dimensionless forrD’=0.3 andwy=1 are fixed anc\
=0.3,0.7,0.9, and 1.

Milonas and Chialvd4], but the present asymmetry is in-
duced by the correlation between the additive and multipli-
cative noises.

In what follows we calculatéV)g from Eqg.(9) by using
dimensionless parameters and settiig@e=Jo=0c=R=1.
In Fig. 1, we plot the negative net voltage versus the additive
noise strengttD for different values ofx. Here we seD’
=0.3,wp=1, and A=0.3, 0.7, 0.9, and 1, respectively.
When A =1, the stationary probability density () [see
Eqg. (6)] will be divergent at the pointsp=sin~\D/D’
+2n7 (n=0,+1,=2,+3,...). ForD<D’, (V)s cannot
be determined from Ed9); hence we only plot the curve in
the case oD>D'. Several distinct featues can be seen from
Fig. 1. First, the net voltage is always negative. Second, there
is a peak in th&€V)s vs D curve. Third, with the increase of
\, the net voltage increases, and the peak value moves to-
ward the right. In Fig. 2, we represent the net voltage as a
function of D for different multiplicative noise strength’.
It is found that as the value @' increases, the crest value
descends, and the curve becomes more and more smooth.

Ill. A DICHOTOMOUS NOISE MODEL

If &(t) in Eq. (3) is replaced by a symmetric dichoto-
mous noisgwe now set the driving currerit(t) =a&y(t)],
we have

b= — wosing— £(1)sing+ag(t), (10)

which has the same form as E@) of Ref. [4]. Here &(t)

=(2ecRI%)&(t), wo=2eRy} /%, anda=als. The statisti-
cal properties ogy(t) are now given by

uncorrelated, this solutior ¢(t) would have the same prob-

ability as ¢(t), and there would be no symmetric breaking.
However, in the presence of the correlation, the probability,
even though it is Gaussian, does not have this symmetry. Th
result obtained here is somewhat similar to that obtained by

D ’ ! !
$Eo(1)1=0, (£o(D&o(t))=—e T IT=E2 M,
(11)
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FIG. 2. The mean negative voltage Bsfor different values of

D’ in the dimensionless formh=0.3,wy=1, andD’'=0.3, 0.7,

and 2.

Here &y(t) has two valuestE (E>0), and 1/2=\"/2 is
the transition probability ofy(t) from E to —E, or vice
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In the case oh\’'> w,, the integral on the right-hand side of
Eqg. (16) stems mainly from the values ne&& 7, so we
approximately takeP’(x,7)=P’(x,t). Then Eq.(16) be-
comes

IP' (1) =3 5woSINGP’ (,1) + 3 4(Singp—a)
XATIE29,(sing—a)P' (¢,1). 17

Taking into account the conditioh’> w,, we obtain the
approximate Fokker-Planck equation

atP’<¢,t>=—a¢Al<¢)P'(¢,t>+aisl<¢)P'<¢,t>,( 5
1

where A;(¢)=—wysing—(E?/\")cosp(a—sing), and

B.(¢)=(E%\")(a—sing)2. With the periodic boundary
conditions, the stationary solution of E(.8) is given by

Pé((b):NlW § d¢’e*‘1'1(¢')*u19(¢7¢’), (19)

where  W1(¢)=[§[A1(¢)/Bi(¢)]dd’", u1=(\ wo!
E?) 3" singd ¢/ (a—sing)?], andN; is the normalized con-

versa. From Eq(10), we can obtain the stochastic Liouville stant. From Eq(19), we find that wherja| <1, the stationary

equation[13]
Ip($,t) = — Ayl — wosing —sing&(t) +ag(t)]p(,t).
12
Since the probability density is given byP’'(¢,t)

=(p(¢,t))¢, it follows from Eq.(12) that

9 pwoSINGP’ (1) + 9 4(sing—a)P1(,1),
(13

aP'(¢,t)=

whereP1(¢,t) =(&(t)p(,t))s. From the Shapino-Loginov

differential formula[14], we obtain

AP L($,t) = wod 4SINGP(h,1) + E2d,4(sinp—a)P’ (¢h,t)
—N'Pi(a1), (14

with E=(2esR/#)E.
The formal solution of Eq(14) is

1(¢t)—f “ACI[E2g (sing—3) P’ (¢,7)]d T,
(15

where A=)\’—woa¢sin¢. Substituting Eq.(15) into Eg.

(13), we obtain the probability density equation
P ($,t) =3 4woSINGP’ (1) + 3 4(singp—a)
t N ~ ~
xJ e ATIE2g,(sing—a)P’ (¢, 7)dT.
0

(16)

state of the system will be divergent at the points
=sin"'a+2mn (n=0,£1,+2,+3,...). As aresult, we
only study the case d&|>1. In this case, the net voltage is
given by

f
55 {(~ wosing— £(D)sing) ),
(20

(V1) =(V(.1) gh=

Using the Shapino-Loginov differential formula4], we ob-
tain

(_ 1)k’E2w|(()—1

N 770 1 101 _ ainok—1
(singé(t));= kzl ) 0sZ 1p(1—sin2"1¢),
(21)
so that
f ( 1)kE2 k—1
<V>s:2 ( wo(Sing) 4+ ElW

X(cosF 1p(1-sin2"1¢)),

ﬁwo
=% |, by p)singd -+ ZeE

(— 1) B2
(2N7)K

><fZﬂP;(¢)C052<‘1¢(1—sin2k‘1¢)d¢. 22)
0

In Eq. (10), the multiplicative and additive noises are
taken to be the same Gaussian white noise for ease of calcu-
lation. If they are taken as different Gaussian white noises,
Eq. (10) is replaced by
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08 r we may appropriately adjust temperature to make the net
! voltage depart from the peak value by taking into account
07 that in Eq.(3) the internal thermal noise strenghis pro-

portional to the temperature. For the second model, we may
change the intensity of the driving current so as to make the
net voltage leave the peak value. For given temperature and
driving current, we should adopt measures to reduce and
avoid the environmental perturbation in order to make the
net voltage the lowest.

It was reported 4] that symmetric noise cannot induce a
net voltage in the Josephson junction. By the study of the
above two models, we find that if in the system there is a
correlation between additive and multiplicative noises, the

01 F symmetric noise can also produce a net voltage in the Jo-
i sephson junction. The energy in response to the net voltage
0 Lt i b arises from the noise’s energy, which is determined by the
0 05 1 15 2 25 3 35 4 correlation between the additive and multiplicative noises. If
D the noises in Eq(3) are O-U noises or symmetric shot

noises, the same result will be obtained, provided that there
is a correlation between the additive and multiplicative
noises. The key factors of the symmetric noise-induced net
i _ voltage are(a) the additive and multiplicative noises must
d=— wosing— £(t)sing+an(t), (23)  exist simultaneously, antb) there exists a correlation be-

_ o tween the additive and multiplicative noises. Such a correla-
where &(t) and n(t) have the valuestE and *E’ (E  tion breaks the symmetry of the system, and makes the prob-
+#E’, and E,E’'>0), respectively. We set their statistical abilities of the fluctuations on the two sides of the potential
properties to  be (&(t))=(n(t));=0, (&(t)&(t"));  barrier different, so that a net voltage arises.

FIG. 3. The mean negative voltage Bsin the dimensionless
form. \'=100,wy=1, anda=2.

:'EZG—)\'H—I'\' <77(t) n(t/)>f:'é/26—)\'\t—t'\' and
(E(t)p(t"))s=aVEE'e V"V (0<a=1). The transition ACKNOWLEDGMENT
probability for £(t) from E to —E, or vice versa, ia.’/2; the J. H. L. thanks Professor D. Y. Xing for helpful and use-

corresponding transition probability foy(t) is alsor’/2. It ful discussions.
is clear that Eq(10) is a special form of Eg(23) in the case

of a=1 andE=E’. Further study shows that in the sym- APPENDIX
metric dichotomous noise case, the net voltage appears only : . .
when the multiplicative noise and the additive noise have T8 9E]9“a“°”(4) can be transformed into the following form
correlation. s
Figure 3 shows the calculated result of ELD), in which . ) . == ,
the net voltage is negative and exhibits a peak with increas- ¢~ ~ @0oSiNg+(—sing+AVD/D")&(t)+ 7' (1),
ing D. In the calculation we only take the preceding four
t in th i f EQR2). == -
erms in the expansion of E¢22) where 7' (t)= n(t)—)\\/W)g(t). The statistical proper-
V. DISCUSSION tieszof n’(t? are(n’(t)>f=_O, and(n’(t?n’(t’)>f:2D(1
—\9)8(t—t'). Now the noiseg(t) and »'(t) are no longer
In the two models above, we find that the net voltagecorrelated.
caused by the correlated symmetric noises is always nega- From Eq.(Al) and the Novikov theorenfl2], we can
tive. From the calculated results, one may manipulate thebtain
noises to reduce the net voltage to the lowest degree. In the

case of given environmental perturbation, for the first model, <§(t)sin¢>f:5f(_sin¢+)ﬂ/’|j/’|j')c031,, (A2)
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